Non-linguistic vocalisation recognition based on hybrid GMM-SVM approach

نویسنده

  • Artur Janicki
چکیده

This paper describes an algorithm for detection of nonlinguistic vocalisations, such as laughter or fillers, based on acoustic features. The algorithm proposed combines the benefits of Gaussian mixture models (GMM) and the advantages of support vector machines (SVMs). Three GMMs were trained for garbage, laughter, and fillers, and then an SVM model was trained in the GMM score space. Various experiments were run to tune the parameters of the proposed algorithm, using the data sets originating from the SSPNet Vocalisation Corpus (SVC) provided for the Social Signals Sub-Challenge of the INTERSPEECH 2013 Computational Paralinguistics Challenge. The results showed a remarkable growth of the unweighted average of the area under the receiver operating curve (UAAUC) compared to the baseline results (from 87.6% to over 94% for the development set), which confirmed the efficiency of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A framework for discriminative SVM/GMM systems for language recognition

Language recognition with support vector machines and shifteddelta cepstral features has been an excellent performer in NISTsponsored language evaluation for many years. A novel improvement of this method has been the introduction of hybrid SVM/GMM systems. These systems use GMM supervectors as an SVM expansion for classification. In prior work, methods for scoring SVM/GMM systems have been int...

متن کامل

Robust Text Independent Speaker Identification Using Hybrid GMM-SVM System

This paper introduces and motivates the use of the statistical method Gaussian Mixture Model (GMM) and Support Vector Machines (SVM) for robust textindependent speaker identification. Features are extracted from the dialect DR1 of the Timit corpus. They are presented by MFCC, energy, Delta and Delta-Delta coefficients. GMM is used to model the feature extractor of the input speech signal and SV...

متن کامل

Exploring classification techniques in speech based cognitive load monitoring

The ability to monitor cognitive load level in real time is extremely useful for preventing fatal operating errors or improving the efficiency of task execution. In top of the success of our previously proposed speech based cognitive load monitoring system, we explored alternative classification techniques in this paper, including simple linear kernel Support Vector Machine (SVM), hybrid SVM-GM...

متن کامل

Combining deep speaker specific representations with GMM-SVM for speaker verification

This study combines a Gaussian mixture model support vector machine (GMM-SVM) system with a nonlinear feature transformation, discriminatively trained to extract speaker specific features from MFCCs. Separation of the speaker information component and non-speaker related information in the speech signal is accomplished using a regularized siamese deep network (RSDN). RSDN learns a hidden repres...

متن کامل

Bhattacharyya-based GMM-SVM system with adaptive relevance factor for pair language recognition

In this paper, we develop a hybrid system for pair language recognition using Gaussian mixture model (GMM) supervector connecting to support vector machine (SVM). The adaptation of relevance factor in maximum a posteriori (MAP) adaptation of GMM from universal background model (UBM) is studied. In conventional MAP, relevance factor is empirically given by a constant value. It has been proven th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013